
PRESENTED BY:

Automation of Determination
of Optimal Intra-Compute Node

Parallelism
Scalable Tools Workshop

Antonio Gómez
agomez@tacc.utexas.edu

James C. Browne

8/1/16	
 1	

Why?

•  Many applications using MPI for intra-node
parallelism

•  Not all loops in the code are the same

•  Improve resources utilization, get highest intranode
parallelization

•  But still, make it as easy as possible for users

8/1/16	
 2	

Using PerfExpert for this
•  PerfExpert

•  Under development since 2008
•  Show users something simple

•  We don’t look for best performance, but for good performance
•  Several different tools integrated into PerfExpert

•  Compilation, Measurement, Instrumentation, Analysis,
Recommendation

•  Continuous improvements
•  Analysis parallelization
•  Load imbalance
•  Vectorization reports

•  Support for KNL

8/1/16	
 3	

h)ps://github.com/TACC/perfexpert	

What are we trying to do
•  Help users characterize their codes
•  Create a list of most critical loops and code sections

with:
•  Information about LCPI
•  Highest possible degree of parallelism of that loop/section

•  Expect changes in the code by the user
•  Rerun analysis
•  Automate as much as possible
•  And this is only intra-node

8/1/16	
 4	

Find critical sections

•  Use LCPI
•  HPCToolkit/VTune under the cover (Measurement)

•  LCPI metric is calculated for each code section
(Analysis)

•  Metrics are modified depending on the processor

•  Still adding support to KNL
•  Consider MCDRAM
•  Detect memory mode

8/1/16	
 5	

LCPI
•  LCPI (Local Cycles Per Instruction)
•  Several metrics associated to the main one

•  Processor dependent
•  Sandy Bridge

•  Data
•  TLB
•  …

LCPIData = L1_HIT*L1_lat+L2_Hit*L2_lat

+L2_Miss*Mem_lat)/TOT_INS

8/1/16	
 6	

What’s the idea?
•  Start with MPI applications
•  Find critical loops
•  Optimize the code
•  Annotate highest degree of parallelism
•  When no further optimization, introduce OpenMP
•  Reoptimize
•  But do this considering the highest degree of

parallelism possible (empirical value) and the
overhead introduced by OpenMP

8/1/16	
 7	

Automated workflows
•  MPI Workflow

•  Many applications still use MPI for intra-node parallelization

•  Idea
•  Find critical sections
•  Identify scalability for those sections
•  Improve memory access pattern
•  Rerun scalability
•  Repeat if necessary

8/1/16	
 8	

Estimation Workflow
•  For the main loops in the code, identify their LCPI
•  Get max. theoretical speedup and compare with

achieved
•  Decide whether to continue or not

8/1/16	
 9	

LCPI	
 -­‐	
 Sandy	
 Bridge	

Hybrid Workflow
•  Consider OpenMP overhead

•  Identify a threshold that specifies whether
adding OpenMP is beneficial or not

•  Add OpenMP
•  Calculate LCPI
•  Modify memory access pattern
•  Calculate LCPI
•  Check if benefit and compare different with

the threshold

8/1/16	
 10	

Some Results (SPPARKS)

8/1/16	
 11	

Original	
 Weak	
 Scalability	
 OpPmized	
 Weak	
 Scalability	

Future of PerfExpert
•  Lustre counters (IO in general)
•  Integration of MPI_T (MPI Advisor)
•  Considering OMPT
•  Software versioning control
•  Extending user interface
•  Instrumentation

•  Already doing something (MACPO: memory access pattern)
•  What else?

•  Keep it simple
•  Promotion!

8/1/16	
 12	

h)ps://github.com/TACC/perfexpert	

Something different
now

8/1/16	
 13	

REMORA
•  Monitoring/Profiling tool developed at TACC
•  Very simple:

•  Background task on each node
•  Collects:

•  CPU utilization
•  NUMA stats
•  Memory utilization (free, virtual,…)
•  Lustre counters

•  Fairly popular tool at TACC systems (XALT)
•  Very easy to use, easy to understand

$  remora ./myexe
$  remora mpirun ./myexe

•  Answers simple questions

8/1/16	
 14	

h)ps://github.com/TACC/remora	

REMORA

8/1/16	
 15	

h)ps://github.com/TACC/remora	

=============================== REMORA SUMMARY ==============================
 Max Memory Used Per Node : 7.65 GB
 Total Elapsed Time : 0d 0h 1m 9s 176ms
--
 Max IO Load / home1 : 0 IOPS 0 RD(MB/S) 0 WR(MB/S)
 Max IO Load / scratch : 76 IOPS 3011 RD(MB/S) 425 WR(MB/S)
 Max IO Load / work : 0 IOPS 0 RD(MB/S) 0 WR(MB/S)
==
 Sampling Period : 1 seconds
 Complete Report Data : /lbm_bench/bin/remora_7306879
==

Use Case: More IO

•  Original code creating
high IO load

•  Improved IO: reduce
frequency and how it is
implemented

•  New code: Improved
performance. Improved
stability of filesystem

8/1/16	
 16	

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000

IO
 (r

eq
ue

st
s/

s)

Time (seconds)

Original Improved

h)ps://github.com/TACC/remora	

PRESENTED BY:

Automation of Determination
of Optimal Intra-Compute Node

Parallelism
Scalable Tools Workshop

Antonio Gómez
agomez@tacc.utexas.edu

James C. Browne

8/1/16	
 17	

